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Astrocytes, once believed to serve only as “glue” for the structural support of neurons, have been demonstrated to serve critical
functions for the maintenance and protection of neurons, especially under conditions of acute or chronic injury. There are at
least seven distinct mechanisms by which astrocytes protect neurons from damage; these are (1) protection against glutamate
toxicity, (2) protection against redox stress, (3) mediation of mitochondrial repair mechanisms, (4) protection against
glucose-induced metabolic stress, (5) protection against iron toxicity, (6) modulation of the immune response in the brain, and
(7) maintenance of tissue homeostasis in the presence of DNA damage. Astrocytes support these critical functions through
specialized responses to stress or toxic conditions. The detoxifying activities of astrocytes are essential for maintenance of the
microenvironment surrounding neurons and in whole tissue homeostasis. Improved understanding of the mechanisms by
which astrocytes protect the brain could lead to the development of novel targets for the development of neuroprotective strategies.

1. Introduction: Brain Injury and
Cellular Responses

Mechanisms causing damage to the central nervous system
(CNS) are numerous and complex, ranging from those
associated with age-related neurodegeneration to the acute
mechanisms of traumatic brain injury (TBI), ischemic stroke,
and radiation exposure. In all cases, however, astrocytes
play a central role in the compensatory responses that
nature has designed to protect against the loss of terminally
differentiated, nonreplicating neurons.

Like aging, acute injuries can result in a long-term pro-
gression of pathogenic changes that alter brain functions
for years afterwards [1]. Specifically, following an initial
TBI, secondary events can occur that extend both the area
of as well as the intensity of the injury. Loss of vascular integ-
rity resulting in a breakdown of the blood brain barrier (BBB)
causes exposure of the CNS to exogenous immune cell types,
abnormal levels of cytokines, and other cellular mediators

and ionic disruption that can lead to a cascade of pathogen-
esis [2–7]. Loss of BBB integrity is also observed following
ischemic stroke, radiation exposure, and in certain neurode-
generative disorders, due to the loss of neurovascular
functions [8–11]. Secondary damage due to vascular and
metabolic imbalances leads to increased glutamate release
and subsequent excitotoxicity, mitochondrial dysfunction,
and excessive production of reactive oxygen species (ROS),
as well as disruption of glucose metabolism/release, and
further alterations of ion concentrations [12–14]. Glutamate
is thought to be a central mediator in this constellation of
secondary injury events. An increase of extracellular gluta-
mate activates N-methyl-D-aspartate receptors (NMDARs)
in neurons, allowing calcium influx [15]. The resulting cal-
cium excitotoxicity affects mitochondrial functions, causing
a disruption of energy balance and production of excessive
ROS, ultimately causing acute necrotic cell death and/or
delayed apoptotic cell death [15–18]. Further damage can
occur due to prolonged neuroinflammatory and related
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immune responses that exacerbate the injury [19, 20] and
may underlie long-term pathogenesis.

Although the initiating events of CNS damage may
differ, similar patterns of secondary injuries are observed
[10, 21, 22]. This implies that understanding of the mecha-
nisms underlying the CNS response to any injury may allow
the development of treatments for other diseases or disorders.

Historically, treatments for acute or chronic damage to
the nervous system have focused on neuronal responses
and survival. This was due to the neurons’ perceived impor-
tance in cognition and their postmitotic status which pre-
vents their replacement when damaged [23, 24]. However,
more attention is now being paid to the impact of nonneur-
onal cell types that function to mitigate damage and promote
neuronal function and repair following tissue injury. In
recent years, there has been a greater appreciation of the role
of astrocytes in brain function and survival. The perceived
value of astrocytes has risen from their initially defined role
of “brain glue” to current findings that astrocytes are critical
for modulating synaptic transmissions, managing energy
metabolism, water, and ion homeostasis, and protection of
neurons from oxidative stress under both mild and cata-
strophic conditions [25–29]. Here, we review the role of
astrocytes in the protection of neurons from the conse-
quences of initial and secondary injury processes (Figure 1).

2. Astrocytes: Origin, Morphology,
and Activation

Astrocytes are members of a larger family of nonneural, glial
cells which include oligodendrocytes and Schwann cells, both
of which form myelin and microglia, which are specialized
macrophages that aid in immunity. Astrocytes and the other
cells of the glial family are defined, in part, by their inability
to produce an action potential upon stimulation [30]. Astro-
cytes are embryonically derived from progenitor cells of
neuroepithelium which differentiate to function in their tra-
ditional roles as support cells. They provide nutrients and
remove end products of metabolism [31]. Astrocytes exhibit
spongiformmorphology, with processes in close contact with
neuronal synapses and other components of the CNS [32].
Recent advances in our understanding of astrocytes, dis-
cussed below, reveal the astrocyte to have essential roles in
synaptic function and nervous system repair [33, 34].

Astrocytes, the most abundant nonneuronal cell type
in the brain, consist of two main subclasses: protoplasmic
and fibrous [35]. Protoplasmic astrocytes display a stellate
appearance in the grey matter, and fibrous astrocytes primar-
ily exist as long, thin, fibrocyte-like cells in the white matter
of the CNS [36]. Each subtype has a distinctive profile of gene
expression, as reflected in their expression of specific recep-
tors and proteins [37, 38]. These two types of astrocytes
display differences in their development and their expression
of receptors and proteins [37, 38]. However, both subtypes
express glial fibrillary acidic protein (GFAP), the main astro-
cytic intermediate filament, as well as calcium-binding S100B
protein (S100B) [39, 40].

Activation of astrocytes can occur in response to a variety
of injuries to the brain and in response to inflammation or

pathological neurodegeneration [35]. The activated state,
astrogliosis or reactive astrogliosis, is believed to have multi-
ple functions in the brain and has been the topic of contro-
versy for over 20 years [32, 35, 41]. While in some cases,
astrocyte activation has been linked to repair and return to
homeostasis, and in other cases, astrocyte activation has been
related to the formation of scar tissue and the inhibition of
neuronal axon outgrowth [35]. Induction of the reactive state
of astrocytes can occur through multiple mechanisms includ-
ing the presence of amyloid beta peptides (Aβ peptides), to
neuronal damage or neurodegeneration, the release of proin-
flammatory cytokines by microglia and macrophages, or in
response to acute injury to cells of the CNS [42–44]. The time
course of astrocyte reactivity is heterogeneous and may
depend on the location and type of injury [45]. In certain
murine models of mild CNS injury, astrocyte reactivity is
transient [46]. However, other studies indicate long-lasting
increases in astrocyte reactivity occurring after either mod-
erate or severe CNS injury from TBI or by radiation [47, 48].
Mild perturbations of the CNS can be adequately repaired,
and homeostasis can be maintained with cooperation among
glial cells. However, under more severe conditions, astrocytes
remain in a state of reactivity indicating an inability to
adequately repair. Similarly, astrocytes in postmortem Alz-
heimer’s patients appear to maintain themselves in a con-
tinuous reactive state, consistent with chronic inflammation
observed in this disease [49]. Thus, astrocyte reactivity per-
sistence may indicate the presence of unresolved dysfunction
in the CNS.

The primary alterations in the transformation of normal
astrocytes to reactive astrocytes include hypertrophy of
their main cellular processes, proliferation, and alterations
in protein expression [32, 50, 51]. Fibrous and protoplasmic
astrocytes display differences in the length of their processes
following mechanical injury. In a murine model of axonal
injury, fibrous astrocytes displayed condensed, retracted pro-
cesses [46]. In contrast, protoplasmic astrocytes displayed
increased length and branch complexity of their processes
after injury [32, 52]. This may be a reflection of their
functions within the brain, but more research is required to
understand the significance of these changes. Of greater
interest are their different sensitivities to damage. Research
of brain ischemia and cortical lesions has shown that proto-
plasmic astrocytes may either die or differentiate into fibrous
astrocytes after brain injury caused by ischemia and cortical
lesions [52, 53]. This suggests that the differences between
astrocyte types are fluid and dependent on environmental
conditions. Significantly, protoplasmic astrocytes promote
the differentiation of neural stem cell (NSC) into neurons
via their secretion of brain-derived neurotrophic factor
(BDNF) secretion [54]. Also, while both protoplasmic and
fibrous astrocytes aid in motor neuron neurite outgrowth,
protoplasmic astrocytes produced factors in the extracellular
matrix that aided in axonal growth of V2a interneurons,
while extracellular matrix produced by fibrous astrocytes
had more factors that inhibited axon growth of V2a interneu-
rons, suggesting that the actions of the protoplasmic and
fibrous astrocytes are selective for specific neurons [55].
Thus, the differentiation or death of protoplasmic astrocytes
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Figure 1: Schematic of mechanisms of neuroprotective effects of astrocytes. There are at least seven distinct mechanisms by which astrocytes
protect neurons from damage. (1) Protection against glutamate toxicity occurs through astrocyte uptake of extracellular glutamate through
the excitatory amino acid transporter 2 (EAAT2) and the glutamate transporter 1 (GLT-1). (2) Protection against redox stress through the
activation of Nrf2 and regulation of antioxidant genes; protection of the neurons is also advanced by the export of glutathione precursors
to help neurons synthesize glutathione. (3) Mediation of mitochondrial repair mechanisms by which astrocytes received damaged
mitochondria from neurons for mitophagy and in return deliver healthy mitochondria to the neurons. (4) Protection against glucose-
induced metabolic stress, which involves astrocytes taking up extracellular glucose for storage as glycogen; the glycogen can be released to
neurons as lactate for their metabolism at a later time. (5) Protection against iron toxicity, in which astrocytes sequester free iron for
storage in complex with ferritin. (6) Modulation of the immune response in the brain occurs by astrocyte inhibition of both T cell and
monocyte activation; the mechanisms for these actions are not fully known. (7) Maintenance of tissue homeostasis in the presence of
DNA damage, where astrocytes can effectively repair their DNA through both homologous recombination and nonhomologous end
joining, following pause of the cell cycle.
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may have a significant impact on replenishing neurons and
regrowth of neuronal axons in the CNS following injury
depending upon the site of injury.

Reactive astrocytes perform a variety of tasks in response
to injury which can be beneficial or deleterious to the sur-
rounding neurons, depending on the circumstances of the
injury. Reactive astrocytes can form scars after CNS trauma.
In some cases, scars can be viewed as initially beneficial since
they limit immune cell invasion, decrease neuroinflamma-
tion, and maintain ion homeostasis in damaged brain tissue
[56, 57]. Ablation of proliferating reactive astrocytes after
moderate closed cortical impact (CCI) in mice produced
increased inflammation and neuronal death, suggesting that
the overall value of astrocyte reactivity is for the protection
of neurons postinjury [58]. Evidence indicates interference
in the development of the astroglial scar results in increased
neuronal cell death and decreased modulation of inflamma-
tion [59]. However, there is controversy over its long-term
impact of the scar tissue on repair and functional recovery
[60, 61]. Prior evidence suggests that glial scar formation pre-
vents or inhibits axonal regrowth of neurons [62]. This has
been attributed to astrocyte expression of chondroitin sulfate
proteoglycan, a known inhibitor of neuronal axons during
embryogenesis [63]. However, in murine models where
astrocyte scar formation is impaired, there was demonstrated
to be less neuronal axon regrowth and remodeling [64, 65].
Using transgenic murine models, one research group demon-
strated that the formation of an astrocytic scar actually
improved neuron axonal regrowth, provided that brain-
derived neurotrophic factor (BDNF) and neurotrophin-3
(NT3) were added [64]. Together, these studies suggest that,
in contrast to initial hypotheses, the presence of astrocytic
scars alone does not prevent axonal regrowth, but rather that
the lack of adequate growth factors may be the problem.

The beneficial nature of gliosis may become detrimental
when damage is too severe for homeostasis to be reestab-
lished. For the purposes of this review, we will focus mostly
on the mechanisms by which astrocytes protect neurons
under basal conditions and after injury. This will involve
focusing on the astrocyte’s ability to collect and transport
vital nutrients, neurotransmitters, and ions in the brain, to
release antioxidants during redox stress, to repair mitochon-
dria and DNA after injury.

3. Astrocyte Defense against Glutamate Toxicity

Glutamate is the most abundant excitatory neurotransmitter
in the brain, with actions mediated through a diverse family
of receptors to modulate synaptic transmission and aid in
plasticity [66, 67]. In normal synaptic communication, neu-
rons release measured quanta of glutamate into the synaptic
cleft. However, following physical trauma, radiation expo-
sure, and chronic neurodegenerative disorders, including
Alzheimer’s disease, excessive glutamate is released or fails
to be taken up for days after injury [68–71]. The cause of
glutamate dysregulation in TBI and neurodegeneration is
not completely understood, but elevations in free glutamate
are linked to poor clinical outcome [71]. Recent evidence
indicates that glutamate is released by dying or damaged

neurons, possibly via the cystine glutamate antiporter
[72, 73]. Excessive extracellular glutamate leads to excitatory
neuronal cell death attributed to overstimulation of NMDAR
and subsequent overproduction of ROS in neurons [74, 75].

Under conditions of normal neuronal activity, astrocytes
are responsible for the uptake of excess glutamate from the
synaptic cleft. Following uptake, astrocytes process the gluta-
mate into glutamine and return it to neurons for reuse [76].
Consistent with this role, astrocytes highly express the excit-
atory amino acid transporter 2 (EAAT2) and the glutamate
transporter 1 (GLT-1) which are responsible for the active
uptake of glutamate [77]. Glutamate homeostasis is a critical
function of astrocytes in the brain, as demonstrated experi-
mentally by the neurotoxicity that results from inhibition of
the astrocyte glutamate transporters [78, 79].

Following tissue injury, astrocytes can actively take
up excessive glutamate from the extracellular (nonsynaptic)
space and buffer its potential excitotoxic actions on neu-
rons. The reduction of extracellular glutamate by astrocytes
decreases the subsequent lesion size, mitigates neuronal
death, and improves CNS function postinjury [80].

Under conditions of severe injury, the extent of damage
and types of injury to the astrocytes themselves can impact
the ability of astrocytes to protect neurons from glutamate
toxicity [81]. For example, astrocytes injured by radiation
or more severe forms of TBI display reduced glutamate
uptake activity as compared to the uninjured condition,
allowing increased neuronal uptake of glutamate and a
greater extent of neuronal cell death and seizure activity
[70, 81, 82]. The mechanism for radiation inhibition of astro-
cyte uptake of glutamate is thought to be related to ROS inhi-
bition of the astrocytic glutamate transporter via oxidation of
protein sulfhydryl groups critical for function [83, 84]. At
least three potential mechanisms have been proposed for
increased extracellular glutamate levels and subsequent exci-
totoxicity in TBI [85, 86]. These mechanisms may occur in
tandem and are not exclusive. In the first potential mecha-
nism, tumor necrosis factor-α (TNF-α), the proinflammatory
factor released during brain damage, downregulates gluta-
mate uptake by astrocytes and suppresses conversion of
glutamate to glutamine [87]. In the second possible mecha-
nism, TBI- and ischemia-induced efflux of glutamate from
injured astrocytes may occur in response to thrombin, which
is released after BBB disruption [88]. In a third potential
mechanism, ischemia and glucose deprivation may induce
altered glutamate release by astrocytes [89].Under normal cir-
cumstances, glutamate uptake occurs against its gradient and
must be actively transported into the astrocyte via EAATs.
However, under acidic conditions, as occurswith hypoxia, this
transporter is reversed and expels glutamate [89]. Thus, more
severe neuronal injuries and/or chronic disruptions lead to
cell death when the astrocytes themselves exacerbate gluta-
mate imbalance as they fail to maintain homeostasis.

4. Redox Stress Reduction by Astrocytes

Basal levels of ROS in the brain can result from normal cellu-
lar functions and metabolic activity. While the production of
ROS is a natural consequence of mitochondrial respiration,
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overproduction of ROS following injury exceeds the capacity
of natural cellular antioxidant mechanisms, resulting in the
pathological modification of proteins, lipids, and nucleic
acids [90–93]. To combat these processes, the brain utilizes
multiple pathways for antioxidant defense including super-
oxide dismutase (SOD), catalase and glutathione detoxifica-
tion pathways, and thioredoxin detoxification pathways
[94]. These mechanisms are utilized to different degrees by
different cell types.

A hallmark of glutamate excitotoxicity is increased
intracellular redox stress. Excessive glutamate activation of
NMDAR causes Ca2+ influx into the cytosol of neurons
[95]. The excessive intracellular Ca2+ can translocate into
the mitochondrial matrix where it leads to the collapse of
mitochondrial membrane potential with loss of ATP pro-
duction and, ultimately, cell death [22, 74]. To prevent
this, many cell types upregulate uncoupling proteins (UCPs),
which aid in removal of intracellular Ca2+ and prevention of
Ca2+ entry into the mitochondria [96, 97]. UCPs decrease the
levels of hydrogen protons in the mitochondrial intermem-
brane space and therefore the mitochondrial electrochemical
proton gradient, by leaking them into the mitochondrial
matrix [98, 99]. Since the electrochemical proton gradient is
necessary for ATP synthase function, a decrease in hydrogen
protons decreases ATP production [100]. The increase of
hydrogen protons in the mitochondrial matrix also causes
diminished entry of positively charged molecular calcium
[101]. In the short term, the activity of UCP may benefit
the neurons for immediate survival, but in the long term, it
is detrimental, since this process inhibits ATP production
[102, 103]. Catastrophic calcium entry due to acute or
chronic brain injury can overcome the UCP system, leading
to the production of ROS which causes further mitochondrial
dysfunction and cell death [22, 104–106]. This mitochondrial
membrane depolarization and increase in ROS induced by
high Ca2+ levels can cause apoptosis by facilitating the release
of cytochrome C through the mitochondrial transition pore
and activation of caspase 3 [107, 108].

Astrocytes normally display a higher basal level of
glutathione (0.91± 0.08mM) as compared to neurons
(0.21± 0.02mM), suggesting that under normal conditions,
they are capable of detoxification of higher amounts of reac-
tive oxygen and nitrogen species [109, 110]. Astrocytes also
have a greater inducible expression of glutathione in response
to oxidative stress [111, 112]. The ROS-inducible transcrip-
tion factor nuclear factor E2-related factor 2 (Nrf2) regulates
the glutathione system, as well as the thioredoxin system and
SOD [113–115]. Under basal conditions, Nrf2 is constitu-
tively produced and ubiquitinated for degradation by binding
to the Kelch-like ECH-associated protein 1 (Keap1) in the
cytoplasm [116]. Under conditions of increased oxidative
stress, Keap1 binding to Nrf2 is inhibited [117], allowing
Nrf2 to escape degradation and instead to translocate to
the nucleus where it interacts with the antioxidant
response element (ARE) in gene promoters that activate
the expression of oxidative stress response genes. Previous
research indicated that astrocytes display higher basal and
stimulated levels of ARE binding by NRF2 as compared to
neurons [118].

Interestingly, Nrf2-induced expression and downstream
upregulation of antioxidant defenses in astrocytes confer
enhanced resistance to oxidative stress for both astrocytes
and neurons [119, 120]. As stated above, the enhanced Nrf2
within astrocytes effectively upregulates antioxidant genes
for the protection of the astrocytes [121]. However, Nrf2
expression in astrocytes was also demonstrated to increase
neuronal survival in a murine model of amyotrophic lateral
sclerosis (ALS) and in vitro in acute hydrogen peroxide expo-
sure [122, 123]. The mechanism by which Nrf2 upregulation
in astrocytes allows protection of neurons is complex, and
further research is required for a full understanding. How-
ever, two mechanisms have been proposed for astrocyte
protection of neurons in response to ROS. In the first mech-
anism, Nrf2 induces glutathione secretion from astrocytes
into the extracellular matrix where it is cleaved to one of its
precursors (CysGly, γGluCys, or cysteine) which are then
taken up and used by neurons for glutathione resynthesis
for their own detoxification [21, 124, 125]. In the second
mechanism, the increased levels of Nrf2 induce the upreg-
ulation of the EAAT3 in astrocytes. As described above,
this neurotransmitter transporter is critical for the removal
of extracellular glutamate which after injury can induce
neuronal excitotoxicity. Thus, the removal of extracellular
glutamate protects neurons via a second independent
mechanism [126]. This redox buffering capacity of astrocytes
was demonstrated to be necessary for neuronal homeostasis
under normal basal conditions [127].

5. Astrocyte Defense against Mitochondrial
Dysfunction in Neurons

As describe in Section 4, brain injury can lead to Ca2+-
induced mitochondrial dysfunction, including overproduc-
tion of ROS, loss of mitochondrial membrane potential and
pH gradient, and failure to generate required amounts of
ATP [128]. Recently, the transfer of mitochondria from one
cell type to another has been described as a mechanism for
the replacement and repair of damaged mitochondria. The
benefits of mitochondrial transfer were initially shown in
cell culture studies in which human mesenchymal stem
cells (hMSC) repaired the aerobic respiration of A549-
transformed lung epithelial cells that contained mutated
mitochondria [129]. Mutant A549 cells which received mito-
chondria from hMSCs displayed improved ATP production,
increased lactate uptake, and higher levels of oxygen con-
sumption, a marker of electron transport chain activity
[129]. This study provided compelling evidence for mito-
chondrial transfer and demonstrated the benefits of this
activity as an effective means for protecting vulnerable cell
types. The mechanisms by which mitochondria and other
organelles are trafficked between different cell types are still
not well understood. One proposed mechanism for organelle
transfer involves the creation of tunneling nanotubes (TNTs)
[130, 131]. TNTs are created by a cell after it is subjected to
stress and has been demonstrated to occur during neuronal
development [130, 132]. Of special interest, neurons are
capable of guiding the formation of astrocyte TNTs during
periods of high synaptic activity and thus, high energy
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demand [132]. Transference of healthy mitochondria from
astrocytes to neurons in a murine model of stroke was
observed in vivo [133]. Further, it was noted in this model
that astrocytes only transferred healthy mitochondria to
damaged neurons in a calcium-dependent manner, suggest-
ing neuronal activity was necessary for transference [133].
Conversely, in a separate model, it was demonstrated that
retinal ganglion cells are capable of shedding damaged
mitochondria and that the shed mitochondria were shown
to be taken up by adjacent astrocytes where they under-
went mitophagy [134]. Thus, evidence suggests that mito-
chondrial transfer provides means to deliver healthy
mitochondria to injured neurons and for the elimination
of damaged mitochondria involved in the overproduction
of ROS.

6. Astrocyte Protection against Glucose-Induced
Metabolic Stress

The brain is highly metabolically active, utilizing fully 25%
of the body’s glucose [28]. Accordingly, efficient glucose
uptake and distribution throughout the brain is critical
for cognition and survival. Disruptions in the delivery of
glucose to the brain induce neuronal cell death. Under
normal conditions, the BBB acts as a selective barrier to
control entry of glucose into the brain; however, this bar-
rier is often disrupted in brain injury [135]. Endothelial
cells of the BBB and astrocytes express glucose transporter
1 (GLUT1), a facilitated glucose transporter, to aid in glu-
cose entry into the brain [136]. Astrocytic endfeet encircle
endothelial cells of the BBB and mediate the uptake of
glucose [137–139]. Once past the BBB, glucose is taken
up by all cell types of the CNS. In astrocytes, glucose is
converted into glycogen and stored [140]. In times of
need, astrocytes mobilize their glycogen to make lactate
available for neuronal use. This is especially important
when energy demand is high but neuronal glucose supply is
low, such as under hypoglycemic conditions [141–143].
While neurons express glucose transporter 3 (GLUT3), a
high affinity glucose transporter, they have been shown to
prefer lactate as an energy substrate during times of high syn-
aptic activity [144–146]. Glutamate induces the rapid uptake
of glucose in to astrocytes. Because extracellular glutamate is
released during neurotransmission, this indicates that
glutamate-stimulated glycogen production in astrocytes is
linked to neuronal activity [147, 148].

Insulin and insulin-like growth factor 1 (IGF-1) increase
glycogen storage in astrocytes but fail to impact glucose
transport across the astrocyte cell membrane [149]. How-
ever, selective ablation of insulin receptors in mouse astro-
cytes in vivo results in significantly lower cerebral glucose
levels [150]. This indicates a central role for astrocytes in
monitoring neuronal metabolic activity and maintaining
whole brain energy balance in a manner that is responsive
to insulin release in the blood, but in a manner that is differ-
ent from the regulation that occurs in other tissues.

Acute brain damage, including radiation, TBI, and ische-
mic stroke, can produce sudden damage to the BBB which
can lead to a disruption in the supply of glucose as well as

imbalances in extracellular ions. Of particular importance
in BBB permeability is increased extracellular potassium that
must be removed from the extracellular space [151, 152]. The
increase in extracellular potassium may be due to multiple
factors including direct cellular injury and secondary mecha-
nisms that compromise potassium buffering by astrocytes
[153–155]. While glial cells are capable of buffering normal
increases in extracellular potassium, they become over-
whelmed under conditions of more severe injuries and the
potassium overload can cause death of neurons [155, 156].
Both initial disruption of the BBB and the need to maintain
ion homeostasis produce a rapid depletion of glucose and
metabolic emergency [151, 152, 157]. Hypo- and hyperglyce-
mic conditions both induce greater cell death in neurons
than astrocytes [158–160]. Astrocyte survival in hypogly-
cemic conditions may rely on several factors including
glycogen storage within the astrocytes, alternative energy
metabolism of fatty acids, and utilization of antioxidant
systems to manage increased oxidative stress [161–163].
In vitro research also demonstrates that astrocytes can
improve neuronal survival under situations of glucose dis-
ruption by upregulating their respective monocarboxylate
transporters (MTCs) which transfers lactate from astrocytes
to neurons [164, 165].

While astrocytes may increase their release of lactate after
TBI, there is some controversy regarding the possible benefit
of this release, as neurons appear less capable of taking up the
lactate depending on their level of damage [166, 167].
Increased release of lactate by astrocytes may contribute to
lactic acidosis which can exacerbate ischemia-induced oxida-
tive stress [168]. High lactate levels in the cerebrospinal fluid
(CSF) of TBI patients have been linked worse clinical out-
comes, which is blamed on neuronal mitochondrial dysfunc-
tions, neuronal inability to uptake lactate, and subsequent
necrosis in the brain [169]. Increased lactate was also seen
in patients after they had seizures caused by severe TBI,
with astrocytes potentially releasing lactate as an energy
source for these overactive neurons [170, 171]. Under nor-
mal homeostasis and conditions of mild-to-moderate
injury, astrocytes act to maintain neuronal survival by
providing energy resources and maintaining the energy
balance of the extracellular environment of the brain, but
these actions can produce further damage if the CNS is
already severely compromised.

7. Astrocyte Mitigation of Iron Toxicity

Astrocytes are responsible for the transfer through the
BBB of a variety of nutrients required for brain tissue
homeostasis, including iron [172]. Iron performs multiple
functions within the brain, serving as an essential cofactor
in several enzymatic reactions including those involved
in the remyelination of neurons after injury [173, 174].
Iron levels are tightly regulated in the brain via specific
transport proteins and metabolic pathways, but dysregu-
lation can occur under pathological conditions [175].
Iron deficiency in the brain, due to causes such as dietary
insufficiency or anemia, can produce cognitive impair-
ments [176, 177]. However, an excess of iron, due to TBI,
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hemorrhagic stroke, or neurodegenerative diseases, causes
neurotoxicity [175, 177, 178].

When present at high levels, ferrous iron (Fe2+) inter-
acts with hydrogen peroxide to generate toxic levels of
hydroxyl radicals through the Fenton reaction [179]. Neu-
ronal susceptibility to iron-mediated necrotic, apoptotic,
and autophagic cell death is likely due to their inability
to effectively combat redox stress [180]. This is in marked
contradiction to astrocytes which are highly effective at
detoxification of ROS [181, 182, 183]. Excess iron induces
lipid peroxidation, protein and DNA oxidation, and cell
death in neurons [175, 184]. Disruptions in free iron han-
dling within the CNS have been observed after acute inju-
ries such as TBI as well as in chronic neurodegenerative
disorders [185, 186]. Iron and other transition metals
within the brain bind to Aβ a peptide that accumulates
in Alzheimer’s disease, causing greater neuronal death
and toxicity than Aβ alone [187, 188]. Similarly, in a
murine model, it was demonstrated that TBI results in
an increase in iron deposition in the brain starting as early
as four hours postinjury and extending for at least three
weeks after initial damage [189]. These findings support
the proposal that acute deregulation of iron homeostasis
may participate in long-lasting pathogenic effects that
underly neuronal damage and death [185, 190] with associ-
ated cognitive impairment.

Astrocytes utilize several distinctly different mechanisms
to directly regulate free iron in the CNS. As discussed above,
astrocytes utilize parallel mechanisms including increased
expression of Nrf2, glutathione, and catalase to combat
redox stress that is likely one of the consequences of
excessive free iron [183, 191]. Astrocytes may also protect
neurons from iron-induced cell damage under normal and
pathological conditions by sequestering free iron through
transient receptor potential canonical (TRPC) channels and
divalent metal transporter (DMT1), respectively [192, 193].
TRPC channels are best known for their proposed role in
calcium influx after activation, though they transport multi-
ple cation types across the cell membrane [194, 195]. In a cell
culture model, it was demonstrated that overexpression of
TPRC6 can increase basal levels of intracellular iron and iron
presence after stimulation, suggesting that iron transfer
through TRPC channels may occur under basal conditions
[196]. In contrast, DMT1 expression is controlled by proin-
flammatory cytokines. The proinflammatory cytokine tumor
necrosis factor alpha (TNF-α), lipopolysaccharide, and
interleukin-6 (IL-6) increase DMT1 expression in astrocytes
while simultaneously decreasing ferroportin 1 (FPN-1)
expression [197, 198]. FPN-1 is an iron efflux transporter
so the result of this activity then is to increase total iron
uptake and storage in astrocytes after injury. Excess iron in
the microenvironment of astrocytes upregulates the expres-
sion of ferritin, a rapidly inducible protein which binds and
neutralizes ferrous iron, thus preventing its effects on oxida-
tive stress [199]. Ferritin functions by first converting ferrous
iron to its less reactive state of ferric iron then nucleating this
ferric iron (Fe3+) and storing it within ferritin’s iron core
[200]. Together, the upregulation of iron transporters plus
the upregulation of ferritin allows astrocytes to act as iron

stores, resulting in reduced free ferrous iron in the microen-
vironment where it may contribute to neuronal toxicity.

8. Modulation and Regulation of Immune
Responses in the CNS

Immunological activity in the CNS is relevant for the preven-
tion of pathogenic infection as well as responses to injury
such as stroke and TBI when the BBB is compromised
[201]. Astrocytes play a complex role in responding to such
CNS insults, and their inflammatory status as well as regula-
tion of immune cells is controversial. Astrogliosis is the
defensive reaction of astrocytes to trauma, ischemic damage,
inflammation, or pathological neurodegeneration [35]. Dur-
ing astrogliosis, astrocytes increase at the site of the lesion,
exhibit altered morphology with increased thicknesses of
cellular processes, and display changes in gene expression
related to altered function [32, 35]. The increase in astrocytes
at the site of injury is believed to be due to proliferation
of astrocytes adjacent to the lesion and not due to astro-
cyte migration from neighboring areas of the brain [35].
Astrocytes can be activated to a proinflammatory or
anti-inflammatory phenotype with an associated alter-
ation in their secretome [202–205]. The overall “defensive
response” of astrocytes following injury is highly complex
and has been shown in some studies to exacerbate inflamma-
tion while generally, it is found to mitigate it [35].

The proinflammatory activation of astrocytes and their
expression of proinflammatory cytokines are dependent
upon the nature of the stimulation they receive and their
location in the brain [206]. The activation of proinflamma-
tory astrocytes can occur through multiple mechanisms
including interactions with microglia, in response to cyto-
kines such as IL-1, IL-6 oncostatin M, leukemia inhibitory
factor (LIF), and transforming growth factor-α (TGF-α), in
response to overt physical damage following brain injury,
from interaction with Aβ plaques, or as a result of activation
of the calcium-dependent phosphatase calcineurin [35, 41,
207]. Under normal circumstances, astrocytes aid in the
morphological and physiological development of neurons
and synaptogenesis [208]. However, cell culture studies sug-
gest that inappropriate activation or overactivation of astro-
cytes can induce the production of TNF-α and other
cytotoxic factors that inhibit neurite growth and synapse for-
mation [209]. Additionally, exposure of astrocytes in cell cul-
ture to cytokines, such as interferon-γ (IFN-γ), can induce
their production of nitric oxide which drives the formation
of its toxic metabolite, peroxynitrite [210]. In cell culture, this
does not harm astrocytes but can lead to mitochondrial dys-
function and eventual cell death in cocultured neurons [211].

Astrocytes can also modulate the immune system to
reduce inflammation. Normal human astrocytes were shown
to suppress both monocyte and T cell activation in cell cul-
tures [205]. It was found that astrocytes reduced monocyte
activation, not by secreting IL-10, but by blocking CD80
induction on the monocytes through an undefined mecha-
nism [205]. Astrocytes can also function in a manner to
recruit and direct white blood cells, both leukocytes and
monocytes, to an area of injury, while at the same time
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protecting healthy tissue from inflammatory consequences of
white blood cell invasion [56, 212, 213]. Importantly,
ablation of activated astrocytes in a murine model of spinal
cord injury resulted in greater inflammation, increased neu-
ronal degeneration, and negatively impacted subsequent
motor function, suggesting that the activated astrocytes con-
trol the extent and location of inflammation following injury
[214]. The mechanisms of suppression of inflammation by
astrocytes require further investigation.

9. Tissue Homeostasis under Conditions of
DNA Damage

DNA repair and synthesis are necessary for normal tissue
homeostasis. DNA repair in neurons has been demonstrated
to occur in a nonuniform and, in some cases, inefficient
manner. Due to a decreased antioxidant response, neurons
display increased chromosomal and mitochondrial DNA
lesions that can result in cell death [215]. As compared to
astrocytes, neurons are slower in rejoining DNA double
strand breaks following radiation exposure, and they display
greater cell death after episodes of DNA damage [216]. Inter-
estingly, DNA damage in neurons can induce the production
of cell cycle enzymes, cyclin B, cyclin E, and proliferating cell
nuclear antigen (PCNA) [217, 218]. But this cell cycle pro-
gression precedes apoptotic cell death rather than survival
and proliferation in neurons [219, 220]. Administration of
cell cycle inhibitors after TBI was shown to decrease neuronal
cell death [221]. The reason for this response could be related
to the hypothesis that slower cycling cells repair DNA more
efficiently [222]. In contrast, a murine model of stroke
indicated that a pause of several days occurred in the cell
cycle of astrocytes before they continue to proliferate after
exposure to injury [223]. Such differences in cell cycle control
may mean the difference between life and death at the
cellular level. An ability to repair effectively before allow-
ing for cell proliferation may explain astrocyte survival
postinjury [222].

Neurons do display a limited ability to repair DNA in
both wild type and 7,8-dihydro-8-oxoguanine glycosylase
(OGG1) deficient mice in response to ischemia [224].
OGG1, a DNA glycosylase involved in base excision repair,
protects neuronal mitochondrial DNA from oxidative dam-
age under ischemic conditions [224]. However, the effective-
ness of this repair has been called into question and may
depend on the location of DNA damage within the chromo-
some of the mitochondria. Studies of DNA damage from
radiation in NTERA-2-derived neurons showed that DNA
was efficiently repaired for transcribed genes but inefficiently
repaired in nontranscribed areas, suggesting that chromo-
somal organization plays an important role in the effective-
ness of DNA repair mechanisms in neurons [225].

In contrast to neurons, astrocytes display robust DNA
repair capacities for both nuclear and mitochondrial DNA
[226]. In cell culture assays, astrocytes exposed to menadi-
one, an agent which induces oxidative stress, displayed a
lower mitochondrial DNA strand break frequency and more
efficient DNA repair as compared to all other cell types of the
brain [227]. The mechanisms induced to repair DNA in

astrocytes are multifaceted and include upregulation of both
primary double strand break pathways: nonhomologous end
joining and homologous recombination [228, 229]. Accord-
ingly, astrocytes are better able to protect themselves after
DNA damage as compared to neurons. To do this, they
utilize a hierarchy of mechanisms. Protection of astrocyte
DNA enables prevention of mutations and subsequent loss
of function or induction of cell transformation and carcino-
genesis. This resilience allows astrocytes to respond to and
aid in the protection of neurons and other cell types after
brain damage.

10. Conclusions

Astrocytes are highly involved in the maintenance and pro-
tection of the CNS microenvironment under normal and
pathophysiological conditions. Brain damage can begin with
mechanical damage to cells, as in TBI, or through oxidative
stressors, as in radiation or in neurodegenerative diseases.
While the cause of the damage differs, the consequences are
similar with an unbalance of extracellular nutrients and ions,
damage to the BBB, and excessive release of excitatory neu-
rotransmitters. The resulting conditions can damage mito-
chondria leading to the production of dangerous levels of
ROS that will in turn exacerbate DNA damage and increase
inflammation, ultimately leading to cell death. Astrocyte
maintenance of the ionic and metabolic environment pro-
tects neurons through multiple mechanisms. Astrocytes take
up and sequester excess neurotransmitters, ions, and meta-
bolic products to restore the homeostatic balance. Astrocytes
also take up and process damaged mitochondria from neu-
rons and transfer healthy mitochondria back to injured
neurons. Astrocytes are capable of producing a robust anti-
oxidant response to protect themselves and also neurons,
through the release of glutathione precursors to neurons.
Their role in scar formation allows astrocytes to regulate
and contain the immune responses in a manner that controls
neuroinflammation. Further understanding of the endoge-
nous protective mechanisms provided by astrocytes may pro-
vide new insights that could lead to the development of novel
treatment options for the protection of susceptible cells, such
as neurons, under conditions of acute injury or pathology.
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